molecular dynamics simulation and docking studies on the binding properties of several anticancer drugs to human serum albumin

Authors

fatemeh keshavarz

mohammad mehdi alavianmehr

reza yousefi

abstract

disposition and transportation of anticancer drugs by human serum albumin (hsa) affects their bioavailability, distribution and elimination. in this study, the interaction of a set of anticancer drugs with hsa was investigated by molecular dynamics and molecular docking simulations. the drugs' activities were analyzed according to their docking scores, binding sites and structural descriptors. the results displayed the ability of cavity 1, located in the cleft between domains i and iii, to potentiate as the principal binding site of all tested drugs. this cavity provides a large space without any effective steric hindrance and induces the stability of the drugs in their binding sites by short and long ranged interactions with the accessible residues. yet, specific structural features may lead some drug configurations to advance stronger interactions with cavities other than cavity 1. also, the small volume and position of some cavities i.e. cavities 3, 5-10 involve penetration, small molecular volume and specific geometry which consequently force most drugs out of the corresponding binding sites.  therefore, the steric factor seems to play the most important role in the transportation of drugs by hsa.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Molecular dynamics simulation and docking studies on the binding properties of several anticancer drugs to human serum albumin

Disposition and transportation of anticancer drugs by human serum albumin (HSA) affects their bioavailability, distribution and elimination. In this study, the interaction of a set of anticancer drugs with HSA was investigated by molecular dynamics and molecular docking simulations. The drugs' activities were analyzed according to their docking scores, binding sites and structural descriptors. ...

full text

Spectroscopic, Docking and Molecular Dynamics Simulation Studies on the Interaction of Etofylline and Human Serum Albumin

The purpose of this study is to investigate the interaction of Etofylline as an established drug for asthma remedy, with the major transport protein in human blood circulation, the human serum albumin (HSA). In this respect, the fluorescence and circular dichroism (CD) spectroscopy techniques, along with the molecular docking and molecular dynamics simulation methods were employed. Analysis of ...

full text

Isothermal Titration Calorimetry and Molecular Dynamics Simulation Studies on the Binding of Indometacin with Human Serum Albumin

Human serum albumin (HSA) is the most abundant protein in the blood plasma. Drug binding to HSA is crucial to study the absorption, distribution, metabolism, efficiency and bioavailability of drug molecules. In this study, isothermal titration calorimetry and molecular dynamics simulation of HSA and its complex with indometacin (IM) were performed to investigate thermodynamics parameters and th...

full text

Molecular Dynamics Simulation and Free Energy Studies on the Interaction of Salicylic Acid with Human Serum Albumin (HSA)

Human serum albumin (HSA) is the most abundant protein in the blood plasma. Molecular dynamics simulations of subdomain IIA of HSA and its complex with salicylic acid (SAL) were performed to investigate structural changes induced by the ligand binding. To estimate the binding affinity of SAL molecule to subdomains IB and IIA in HSA protein, binding free energies were calculated using the Molecu...

full text

isothermal titration calorimetry and molecular dynamics simulation studies on the binding of indometacin with human serum albumin

human serum albumin (hsa) is the most abundant protein in the blood plasma. drug binding to hsa is crucial to study the absorption, distribution, metabolism, efficiency and bioavailability of drug molecules. in this study, isothermal titration calorimetry and molecular dynamics simulation of hsa and its complex with indometacin (im) were performed to investigate thermodynamics parameters and th...

full text

Biophysical and Molecular Docking Studies of Human Serum Albumin Interactions with a Potential Anticancer Pt(II) Complex

The interaction between [Pt(phen)(pyrr-dtc)]NO3 (where phen = 1,10-phenanthroline and pyrr-dtc =pyrrolidinedithiocarbamat) with human serum albumin (HSA) was studied by fluorescence, UV–vis absorption, circular dichroism (CD) spectroscopy and molecular docking technique under like physiological condition in Tris–HCl buffer solution at pH 7.4. UV-Vis absorption spectroscopy indicates that the pro...

full text

My Resources

Save resource for easier access later


Journal title:
molecular biology research communications

Publisher: shiraz university press

ISSN 2322-181X

volume 1

issue 2 2013

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023